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I. INTRODUCTION

Colloidal aggregation is used extensively in industry for
such products as paints1 and gels.2 There has been ex-
tensive experimental3, theoretical4 and simulation5 work
to further our understanding of these complex systems.
Within my own thesis research, we aim to produce a de-
tailed understanding of the far-from-equilibrium behav-
ior of specific colloid systems which have yet to be fully
explained. We are working towards this goal using a
combination of nonequilibrium statistical mechanics and
computer simulations. On completion, this research will
fill in several gaps in our current understanding of ag-
gregating colloids in nonequilibrium applications and aid
in the creation of new high tech materials through an
application of colloidal science.

Simply put, colloids are particulate systems where
mesoscopic (1 nm to 1 µm) particles are dispersed in
solution.4,6 These particles can be composed of one
of many materials ranging from clays7 to synthetics
polymers8 and even complex biological macromolecules9
and cells10 can exhibit colloidal properties. While di-
verse in origin, all colloidal systems share some common
characteristics which allows for the construction of theo-
retical frameworks based on the simple effects of solvent
and colloid-colloid interactions.6

Aggregation in colloid systems is generally induced by
a combination of van der Waals and hydrophobic forces,11
although in binary mixtures it is possible for electrostat-
ics to induce aggregation when the components have op-
posite net charges.12 This is in contrast to the general
effect of electrostatics in colloids, which is to create a re-
pulsive interaction between like charged particles.4 Such
charged particle result from common industrial produc-
tion methods used in creating latex particles,13 and fur-
ther casein colloids used in the food industry also contain
a net charge.14 The combination of repulsive and attrac-
tive interactions can either lead to aggregation or to a
stable suspension based on which forces dominate.6 To
create the desired effect, these interactions can be modu-
lated through such means as the addition of electrolytes
to screen electrostatic interactions15 or through addition
of surfactants to compatibilize hydrophobic surfaces.16
It is also possible for both attractive and repulsive inter-
actions to coexist when they occur over different length
scales.6 This can lead to some very complex and inter-
esting colloidal behavior.4,6

II. INTERACTIONS OF HAIRY COLLOIDS

Within my first project, we were interested in rigor-
ously calculating the interaction potentials between hairy
colloids (Figure 1) with the intent of using the resulting
potential of mean force for the dynamic simulation of
hairy particle aggregation as occurs under certain sol-
vent conditions.17 Currently, this project is on hold until
time and resources permit collection of additional results
and the preparation of a publication, although we intend
to complete this study on some time scale. What follows
is a brief overview of the initial project.

The term hairy particle is used to describe colloidal
particles whose surface is covered by a polymer layer and
the interactions between particles are dominated by this
layer.18 Such a hair is common in synthetic polymer col-
loids where free ends protrude through the surface, al-
though the layer is generally thin (< 1 nm) and sparse
such that it is insignificant in colloidal interactions.8
Layer interactions do become significant for small par-
ticles or when high molecular weight polymers produce
thicker layers.8 There has also been work aiming to con-
struct such hairy layers through the grafting of long
polymer chains to inorganic colloids.19 Additionally, star
polymers, where multiple polymer arms are joined in a
common center, can behave as colloids when there are
sufficient arms to create dense separable particles.20,21

There is existing theory22 and simulation23 investi-
gating the compression energy for such hairy layers, al-
though they assume the particle is sufficiently large to
model the layer as flat, planar and infinite in directions
parallel to the surface. Theory does exist for star polymer
interactions, although many assumption are employed to
produce simple expressions suitable for phase diagram
construction and not for dynamical simulation.24 More
rigorous methods have been used to investigate the struc-
ture of individual star polymers25 and more recently lat-
tice Monte Carlo techniques have been used to study the
equilibrium properties of ensembles of star polymers26 as
well as star and linear polymer blends.27

For our aim of calculating potentials of mean force be-
tween hairy colloids, we have constructed a simple model
of a pair of hairy particles using the Bond-Fluctuation
Model, which has proven successful in modeling the equi-
librium properties of star polymer ensembles.26,27 This
coarse-grained bead model for polymers is based on a
detailed lattice that allows for 108 different bonding vec-
tors between bonded beads28 and this high detail model
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FIG. 1: Schematic of model for hairy colloid interactions. The
solid center of both particles is shown in blue and the polymer
layer of the left particle is shown in red where as tan is used on
the right on. Two different solvent conditions are shown with
the upper schematic showing good solvent conditions and the
lower one showing poorer solvent that induces aggregation to
minimize solvent exposed surface.

is known to well reproduces polymer static properties.29
Each particle is constructed as a solid core with grafted
polymer chains creating the hair. A schematic of parti-
cles constructed in this model is shown in Figure 1

Solvent interactions are modeled by introducing a sim-
ple potential in terms of solvent exposed bead area as
used commonly to model solvent effects in polymer lat-
tice systems.30 This potential is defined as

U = µsoln

where n is the sum number of lattice bead faces ex-
posed to solvent by not being in contact with another
bead and µsol is the solvent chemical potential.

To construct interaction potentials between particles,
methods are developed to calculate the free energy of
interaction between two particles at a specific separa-
tion distance relative to infinite separation. This is ac-
complished by making the beads composing the different
hairy particles not perfectly volume excluding with each
other, but instead introducing a finite energetic penalty
Eocp for two beads from different particles occupying the
same lattice site. By performing simulations over a range
of Eocp values from 0 to a value sufficiently high to pre-
vent any volume exclusion (Eocp = 9kT in this case)
and collecting the statistics on the number of overlaps
at each Eocp value, it is possible to calculate the inter-
action free energy energy. These calculations were per-
formed using the free energy perturbation method the
acceptance-ratio method, which is based on the probabil-
ity for changing this fictitious potential.31 These calcu-
lations are performed for a range of separation distances
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FIG. 2: Free energy profiles between two hairy colloids as a
function of their surface separation distance h, measured in
lattice lengths a. Results shown for different solvent condi-
tions as varied by solvent potential µsol labeled on the plot.
Points show numerical free energy calculation results and lines
are smoothed curves as appropriate for dynamics simulation
of these potentials of mean force.

to calculate an interaction profile.
Using this methods we have performed a proof of con-

cept investigation where the interaction profiles for two
hairy colloids were calculated under different solvent con-
ditions. These initial results are shown in Figure 2 and
here one observes how solvent effects can change the in-
teraction between hairy particles from repulsive to at-
tractive as solvent quality is decreased (µsol increased).
At some point in time we do intend to perform a more
extensive investigation, looking at a collection of differ-
ent hairy particle classes, to produce a rigorous study of
hairy particle interaction under different solvent condi-
tions. Additionally, we intend to use the calculated inter-
action profiles as potentials of mean force in the dynamic
simulation of aggregation phenomena for such hairy col-
loids.

III. AGGREGATION DYNAMICS OF
REACTIVE COLLOIDS

As mentioned in the introduction, very interesting col-
loid behavior can occur when the interaction between
particles include both a repulsive and an attractive com-
ponent at different length scales. The bulk of my current
research focuses on the dynamics of such colloids when
the resulting potentials includes an attractive well favor-
ing aggregation between particles at close separation and
an energetic barrier to entering this well at larger dis-
tances (Figure 3). These reactive colloid systems are
particularly interesting, in that with a sufficiently high
energetic barrier they can exhibit kinetic stability, de-
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FIG. 3: Colloid particle pair-interaction potentials used in simulations where kBT is defined at T = 300 K. The dashed line
shows the original Kostansek potential that diverges to −∞ at close separation. The black curve shows the modified potential
where the close separation interaction is approximated by a parabola to simulate reversible surface adhesion between particles.
The remaining curves are examples of linear scaling of the repulsive region of the base potential to modulate the barrier height
independent of the attractive well. Shown curves correspond to scaling factors f = 0.7, 0.5, 0.3, and 0.1.

spite being far from from the thermodynamic equilibrium
of aggregation.32 Such reactive colloids are used in indus-
trial products including modern latex paint.1,33 In latex
paints, this repulsive interaction prevent aggregation so
as to keep the paint fluid and on evaporation of the wa-
ter liquid component, aggregation proceeds and the paint
cures. Additionally, shear forces, as occur in application
with a brush, can result in partial aggregation and thick-
ening to prevent running.34,35 Therefore there is great
interest in understanding this kinetic stability of reac-
tive colloids and further learning more about how the
energetic barrier can effect the formation of aggregation
structures.

While such reactive colloids are used extensively, our
current theoretical understanding of these systems is still
rather incomplete. Our current theory of reactive col-
loids is based on calculating a simple potential of mean
force between colloids pairs with the aim of determining
the strength of the energetic barrier Ub.6,36–38 With this
parameter, one classifies colloidal systems as either be-
ing aggregating Ub ≈ kT or stable Ub À kT . There
has been limited work using simulations to study the
aggregation of reactive colloids,39–42 although in all of
these studies systems under high shear were investigated
such that a strong driving force rendered the barrier in-
significant and only the steady state rheology was stud-
ied. Colloid aggregation has been investigated through
simulation for depletion force aggregating colloids where
there is no energetic barrier to aggregation and interest-
ing multiple phases of aggregation were observed.43,44 An
energetic barrier would be though to lead to even richer

aggregation dynamics and study is needed.
Therefore we have undertaken a project to understand

how the energetic barrier of reactive colloids influences
aggregation dynamics. For this investigation, a sim-
ple model of reactive colloid aggregation has been con-
structed where the colloid interactions are taken to be
pair separable and the reactive potential between two col-
loids is described in the formalism of Kostansek.38 This
potential extends conventional colloid theory, including
repulsive electrostatics and attractive to van der Waals
terms, to also include an attractive hydrophobic term.
Terms within this model of colloid interaction were cho-
sen to model latex spheres of diameter 2Rp = 135 nm in
an electrolyte solution that results in an energetic barrier
of Ub = 10.3kT at T = 300K.6

A. Simulation Model

This model of colloid interactions was augmented for
numerical simulation. As the base Kostansek potential
diverges to −∞ as colloid surfaces approach contact, the
close distance attractive component has been approxi-
mated with a parabola as has been used in past simula-
tion of reactive colloids.45 Additionally, linear rescaling
has been used to modulate the height of the repulsive
barrier independent of well depth with scaling factor f ,
where the energetic barrier is given by Ub = f10.3kT so
that smaller barrier potentials can be constructed. Ex-
ample potentials used in this study for different values of
f are shown in Figure 3.
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To simulate the dynamics of reactive colloids with dif-
ferent barrier heights, the methods of Brownian Dynam-
ics was used.46,47 In this method, solvent effect is mod-
eled by the Langevin equation in the Ohmic limit such
that the colloid particles are inertialess and their motion
is Brownian stochastic.47 This description is appropri-
ate for colloid particles6 and used extensively in the sim-
ulation of many colloidal systems.39,43 Hydrodynamics
forces are not included as the solvent is not being driven
and the random motion of colloids is insufficient to create
a hydrodynamic field.48

Brownian Dynamics simulation of this model was per-
formed following the algorithm developed by Ermak.49
The physics of this method corresponds to the dynam-
ics of the Langevin equation in the limit of inertialess
particles in a fast relaxing solvent such that the dy-
namics of a colloid particle at any point in times can
be described completely by the sum of pairwise forces,
a viscous-solvent frictional force, and a stochastic term.
With the condition of inertialess particles, a force balance
equation can be used to solve for the instantaneous ve-
locity of each particle that describes the particle’s trans-
lation over a small interval of time.

The stochastic force is a mean field approximation of
the the random fluctuations of solvent that couples to
particle motion. This is a common simulation method
in colloid science to average over the many degrees of
freedom in solvent that have negligible effect individu-
ally due to their short time and length scale, but when
summed and averaged result in a net diffusive drift of col-
loid particles with time.50–54 In the Brownian Dynamics
method, the resulting equation of motion for each par-
ticle coordinate ri over each finite time step of duration
∆t, is

∆ri(t) = Fi(t)
∆t

γ
+ ∆W

where Fi is the net pairwise force on particle i and γ is the
drag coefficient of particles in solvent. For the spherical
colloid particles in this model, γ is calculated from the
particle radius Rp and solvent viscosity η (ηH20 = 8.9 ×
10−4 Pa · s) by Stokes law γ = 6πηRp.

The stochastic influence of solvent is introduced
through the vector ∆W, every element of which is a ran-
dom force characterized by a Gaussian distribution cen-
tered about zero with variance 〈∆W 2〉 = 2D∆t, where
D = kBT/γ is the particle diffusion coefficient. This re-
lationship between the extent of stochastic thermal fluc-
tuation and solvent friction (coupling) follows naturally
from the fluctuation dissipation theorem in the Marko-
vian limit.

Using the Brownian equation of motion, simulations
were performed in a cubic box with periodic boundary
conditions. To limit sampling error and finite size ef-
fects, each simulation contained 1000 particles with the
box size adjusted for the target volume fraction φ. Due
to the high volume fractions simulated and large forces, a
rather small integration time step of duration ∆t = 1 ns

was used. As simulations were used to investigate time
scales on the orders of seconds, this implies billions of
integration cycles for each investigated system and there-
fore computational efficiency was a high priority. To this
end, common optimization techniques were used, includ-
ing linear interpolation tables for the efficient evaluations
of the analytically complex pair forces, neighbor tables to
minimize unnecessary force evaluations, vectorized ran-
dom number generation, and parallelization through the
standard Message Passing Interface (MPI). Additionally,
this high computational resources demand has limited
the current investigation to a single ensemble trajectory
per a system.

It was observed that occasionally particles would ex-
perience a pathologically high net forces due to the sim-
ulated potential that changes quickly over small dis-
tances; especially when such interactions are summed
over multiple neighbors. This should necessitate an even
smaller time step to preserve numerical stability and this
would substantially impact computational efficiency for
the handling of a chance event that occurred at low
frequency. Instead, such high net forces particles were
detected and their coordinate integrations were treated
with a series of shorter integrations where the pair forces
were reevaluated and a new stochastic force generated for
each sub-cycle. As the stochastic contribution to the net
force couldn’t be known a priori, this detection was im-
plemented as a recursive algorithm that attempted an ex-
ponentially increasing number of shorter sub-cycles until
no individual sub-cycle had a change in energy greater
than 5 kBT . As larger magnitude thermal fluctuations
were correlated with a greater number of sub-cycles, spe-
cial care was taken to preserve the stochastic trajectory
as additional sub-cycles were used. In contrast, a naive
approach that discarded the previously seen thermal fluc-
tuations when increasing the number of sub-cycles would
introduce a bias in that larger magnitude fluctuations
would be disproportionately discarded.

In our simulation studies, colloid suspensions with dif-
ferent colloid volume fractions φ are initialized in a ran-
dom structureless configuration and one then observes
the onset of aggregation structure with different pair in-
teraction potentials varying in barrier height. Aggrega-
tion is quantified by coordination number n or the num-
ber of neighboring particles within the attractive well
r < 138 nm of a particle. The bulk aggregation dynam-
ics is measured by the mean coordination number 〈n〉 and
this metric is shown in Figure 4 for the full barrier f = 1
over a range of volume fractions. From these results it
is seen that higher volume fractions aggregate faster and
that significant aggregation of 〈n〉 > 6 is observed within
10 s for the barrier height of Ub = 10.3kT .

Next, we investigated how aggregation dynamics
changed when the barrier height was reduced to 1.03kT
with f = 0.1 and these results are shown in Figure 5.
Here it is first observed that lowering barrier height ac-
celerates aggregation dynamics as expected. Addition-
ally, it is found that later stages of aggregation are ac-
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FIG. 4: Bulk aggregation dynamics as quantified by the mean
coordination number 〈n〉 or average number of neighboring
particles within the attractive well of each particle. Results
for different volume fractions φ with a pair potential having
the full repulsive barrier, f = 1.

cessible in these simulations and very interesting aggre-
gation behavior is observed in these later stages, includ-
ing higher aggregation numbers approaching 〈n〉 = 9.
Further, aggregation dynamics can temporarily slow be-
fore a sudden increase in aggregation kinetics leads to a
more aggregated system (this behavior is most obvious
for φ = 0.5,f = 0.1). As will be discussed later, this later
stage aggregation behavior is associated with reorganiza-
tion and further study is needed.

One immediate question raised by the low barrier re-
sults, is will the higher barrier height systems exhibit
this later stage behavior and on what time scale should
it present? Rather than attempt to answer this question
through further brute simulation, we have developed a
kinetic scaling relationship which will allow a relation of
low barrier dynamics to higher barrier heights. This is
further useful as 10.3kT is only a moderate barrier height
and barriers in excess of 100kT are used commonly in in-
dustry to create kinetically stable colloid suspensions.6
Therefore we have investigated the kinetics of colloid ag-
gregation with the goal of constructing a kinetic scaling
relationship.

B. Analytic Model of Reactive Colloid Aggregation

To this end, a analytic theory of colloid aggregation
is constructed based around a kinetic master equation of
the following form
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FIG. 5: Bulk aggregation dynamics for one-tenth barrier
height f = 0.1 (solid lines) for different colloid volume frac-
tions φ. For comparison, dynamics are also shown for the full
barrier f = 1 as dashed lines.

d

dt
Pn(t) = −(kf

n + kb
n)Pn + kf

n−1Pn−1 + kb
n+1Pn+1 (1)

where kf
n and kb

n are the forward (association) and
backward (dissociation) rates respectively and Pn(t) de-
notes the probability for a colloid to have n neighbor
particles.

In accordance with Kramer’s theory,55 the backward
rate can be estimated as

kb
n ≈

ω0ωb

2πγ/m
exp (−Eb/kBT ) (2)

where m is the mass of a colloidal particle; ω0 is the
frequency of oscillations near the potential minimum;
ωb ≡ −U ′′

kos(hmax)/m is that for the top of the potential
barrier; Eb = Ub + 5.3 kBT is the height of the potential
as is seen from the point of the potential minimum.

The forward rate is proportional to the number of colli-
sions and thus to the overall concentration C of particles,

kf
n = Cka (3)

where the association constant ka in dense systems (l ¿
Rp or φ > 0.05) can also be evaluated with the help of
Kramer’s theory:

ka ≈ V
ω1ωb

2πγ/m
exp (−Ub/kBT ) (4)

Here V ≈ 4π(Rp + Rp)2l is the “reaction” volume in
the vicinity of the potential barrier and ω1 represents
the effective oscillation frequency outside the barrier. In
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TABLE I: The values of ka calculated from Equation 4 at
different volume fractions φ and barrier heights Ub = f ·Ub,full.
The line corresponding to the low concentration limit (φ =
0.05) can be only interpreted as a result of extrapolation.

φ f = 0.1 f = 1

( 0.05 5.9 · 10−6 4.6 · 10−9 )

0.20 3.1 · 10−5 2.4 · 10−8

0.35 6.5 · 10−5 5.1 · 10−8

0.50 2.4 · 10−4 1.9 · 10−7

crowded systems such oscillations are always present due
to permanent collisions with particles from the second
solvation shell. ω1 has the value of the same order as
τ−1
D . For the full energy barrier (Ub,full = 10.3 kBT ) we

derive the association constant ka to be in the range from
10−8 to 10−7 cm3/s, and around ka ∼ 10−5...10−4 cm3/s
for the smallest energy barrier (0.1 Ub,full) used in the
simulations (see Table I).

As for the forward rate in the case of dilute systems
(l ∼ Rp or φ = 0.05), when the diffusional flow of
particles plays the crucial role, the theory of diffusion-
controlled reactions in the steady-state predicts

kf
n ≈

CkakD

ka + kD
(5)

where kD ≈ 4π(Rp + Rp)Dm is the diffusion rate which
is proportional to the number of collisions per unit con-
centration. We found kD to be about 10−11 cm3/s. Al-
though Equation 4 is not suitable for defining the values
of ka in the low concentration limit, it can be used as a
rough prediction which is shown in the first line of Ta-
ble I. Because its estimation is larger than 10−10 cm3/s,
the aggregation mechanism for the dilute colloidal sus-
pension is always in the diffusion-controlled regime.

The following analysis is mainly carried out for the
cases of high volume fractions, where the overall scaling
behavior can be deduced from the Kramer’s’ law Equa-
tions (2-4). Dilute systems have been widely investigated
in literature and remain out of the scope of this paper,
although we present the results of our simulations of such
systems for comparison.

When the potential barrier Ub changes, the values of
Eb and ωb change proportionally to it. Other parameters
remain unaltered. Thus, if the barrier is multiplied by
factor f , then new values of the rates become

kb
n

∣∣
f

= χ kb
n

∣∣
f=1

kf
n

∣∣
f

= χ kf
n

∣∣
f=1

where

χ = f exp [(1− f)Ub,full/kBT ]

Changing all the rates in Equation (1) in accordance
with the same law is equivalent to rescaling time by the

factor χ. The results of this procedure are shown in
Fig. 6. It is seen that all curves show similar initial ki-
netics except in the low concentration limit, φ = 0.05.
In this case, the curves coincide only at very small time
when the coordination number is less than one: the clus-
ters have not been formed yet in this “bimolecular” limit.
At moderately longer time scales it is seen that this
scaling relationship works well for higher volume frac-
tion with larger deviations observed as volume fraction
is decreased. Lastly, there is a significant difference in
the longest investigated times between different barrier
heights at the same volume fraction. These deviations
are investigated further to explain the effect of barrier
height on aggregation kinetics.
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FIG. 6: Scaled coordination number dynamics plotted by
scaled time χt where χ = f exp [β (1− f) Ub] with f being the
barrier height scaling factor and Ub being the barrier height of
the unscaled potential. Different barrier heights are denoted
by the symbols: f = 1 (¤), f = 0.7 (3), f = 0.5 (2), f = 0.3
(4), f = 0.1 (©). Additionally, different volumes fractions
are identified by curve color as labeled on plot.

The short time deviation from the expected kinetic
scaling relationship observed at lower volume fractions
can be explained by the importance of spatial diffusion
at lower densities. This was studied by observing the dis-
tribution of particle coordination number at short time
scales (results not shown). Even at the earliest of time
scales, it was found that aggregation in the reduced bar-
rier case lags behind the full barrier when time is scaled
following the relationship based upon barrier height. At
these initial time scales there is minimal existing struc-
ture and aggregation proceeds largely through the for-
mation of dimers. The scaling relationship accounts for
the difference in times scales for dimer reaction involving
the potential barrier height and therefore the only dif-
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FIG. 7: Snapshots of simulation configurations for φ = 0.35 and f = 0.1 through out time. Particles are color coded by
coordination number, n, with 0 ≤ n ≤ 3 - blue, 4 ≤ n ≤ 6 - green, 7 ≤ n ≤ 8 - red, 9 ≤ n ≤ 10 - pink, 11 ≤ n ≤ 12 - orange. In
the later two snapshots particles with n ≤ 10 are rendered partially transparent to better show the highly aggregated crystalline
domains.

ference is spatial diffusion. Additionally, investigation of
root mean square diffusion distances support this theory
with the high barrier height simulation showing a much
longer diffusion length, 3µm vs. 0.2µm at χt = 1s, than
the tenth-barrier simulation.

As previously noted, the later stages of aggregation
warrant further investigation as different aggregation dy-
namics are observed and such are not explained by the ki-
netics scaling relationship. In studying this phenomena,
the distribution of coordination numbers among individ-
ual particles was investigated at different volume frac-
tions for the lowest barrier f = 0.1 where such anoma-
lous behavior is most prevalent (results not shown). In
comparing these distributions with Figure 5 it was found
that the later stages of aggregation are associated with
a population of highly coordinated particles with indi-
vidual coordination numbers n ≥ 11. Further, on visual
inspection of simulation configurations, it was found that
these highly coordinated particles are associated with
crystalline domains interspersed throughout the colloid
system. Example snapshots of such configurations are
shown in Figure 7 for φ = 0.35.

Correlated with these highly coordinated crystalline
domains are void zones with few particles such that the
late stage colloid aggregation structure is highly hetero-
geneous. These structures explain the failure of the ki-
netic scaling relationships to model the late stages of ag-
gregation as this theory models a simple 1-dimensional
potential energy landscape considering only the scaling
of a single barrier. In contrast, the process associated
with reorganizing an already aggregated colloidal gel into
crystalline domains likely involves a much more complex

potential energy surface with contributions from many
pairwise interactions. Therefore it is possible that with
different barrier heights the mechanism of reorganization
may change with different intermediate structures and
hence the controlling potential energy surface at one bar-
rier height is not simply a linear rescaling of the potential
energy surface of a different barrier height system with
the same mean coordination number.

Evidence for this is found by analyzing the static
structure factor when the mean coordination number
is 〈n〉 = 6 for systems with φ = 0.2 at different bar-
rier heights as shown in Figure 8. Here it is observed
that the microstructure of these systems are substan-
tially different despite having the same bulk extent of
aggregation. In general, it is seen that the lower barrier
height cases have more structure than the higher bar-
rier cases, although f = 1 is something of an exception.
This additional structure may hinder reorganization into
crystalline domains which would explain why the scaled
kinetics of the low barrier cases reorganize faster than
that of the higher barrier cases when the theory predicts
identical scaled results. The relationship between barrier
height and intermediate structures and how this affects
aggregation dynamics is obviously rather complex and
warrants further investigation in future work.

C. Conclusions

Within this study, we have provided a first charac-
terization of the aggregation dynamics of reactive col-
loids including the effect of barrier height at different
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FIG. 8: Static structure factor as calculated for the first
configuration of each trajectory where the bulk coordination
number is 〈n〉 ≥ 6. Time of configuration shown in paren-
thesis within legend. Shown for different barrier heights f at
a volume fraction of φ = 0.2 and calculated over the distri-
bution of particle centered separation distances, plotted by
wave vector scaled by particle diameter (twice particle ra-
dius Rp). Results show how an aggregating configurations of
the lower barrier heights system generally has more structure
than higher barrier height systems with comparable extents
of bulk aggregation.

colloid volume fractions. These results form the core of a
manuscript that we have prepared for publication and are
currently finalizing with our industrial collaborators. It
was found that the early to intermediate stages of aggre-
gation are well described by a kinetics model based upon
Kramer’s theory. Later stages of aggregation involve re-
organization with a dependency on the intermediate ag-
gregation structures that change with barrier height in
a manner not captured by this simple analytic theory.
Therefore more complex behavior is observed in these
later stages and further study is needed to provide a the-
ory of reactive colloid structural reorganization.

IV. INTERMEDIATE STRUCTURES IN
REACTIVE COLLOID AGGREGATION

The reorganization of structure in reactive colloids, as
observed in the later stages of aggregation, has been
found to be non-trivially related to barrier height and
we are currently working to develop a theory of this pro-
cess. The intermediate aggregation structures preceding
reorganization have been identified as important in con-
trolling the dynamics of this process and further investi-

gation of these structures is needed. In a visual analysis
of intermediate aggregation structures, we have identified
several different classes of structures, including isolated
clusters, infinite heterogeneous networks of clusters, and
infinite homogeneous networks. (Figure 9) We hypothe-
size that within each of these classes, reorganization will
proceed through different mechanisms, and therefore it
would be useful to understand the conditions under which
each structure will be formed.

As part of this investigation, we are developing more
rigorous criteria to classify these intermediate structures
through analysis of aggregation graphs. These graphs en-
code the network structures of colloid aggregation with
each particle as a node and edges denoting pairwise ag-
gregation (Figure 10). In analyzing these graphs, we have
explored various stochastic algorithms with the aim of
determining the length scales of highly interconnected
clusters and the strength of connections between clus-
ters. An optimal method is still in progress, although we
are close to creating a rigorous criteria to classify inter-
mediate structures in terms of cluster sizes and strength
of interaction between clusters.

V. REVERSIBLE VS. IRREVERSIBLE
AGGREGATION IN REACTIVE COLLOIDS

We have also began investigating the effect of well
depth on aggregation dynamics, particularly with regard
to reversible vs. irreversible aggregation. Beyond the-
oretical interest, this property of colloids is an impor-
tant design parameter for aggregating colloid products,
with the strength of aggregation modulated through such
means as addition of surfactants to reduce the hydropho-
bic component of attraction.6,16

The effect of well depth Uw was modulated through
linear rescaling of the well region of the pair poten-
tial between colloids to vary well depth independently
of barrier height. From this the original well depth of
Uw = 5.3kT was rescaled to two values of Uw = 0.53kT
and Uw = 53kT to create wells with insignificant interac-
tion and very strong irreversible aggregation respectively.
Using these new potentials, we have simulated colloid ag-
gregation over the range of investigated volume fractions
to determine the importance of well depth on reactive
colloid aggregation dynamics.

Currently, we have collected complete results for sys-
tems with a low barrier to aggregation of Ub = 1.03kT
(f = 0.1) and these are shown in Figure 11. These results
provide a good picture of how well depth factors into re-
active colloid aggregation. In the insignificant well case
Uw = 0.53kT , one observes a small extent of aggregation
resulting from jamming, where volume exclusion con-
straints force a certain extent of nearest neighbor interac-
tion. For the irreversibly aggregation wells Uw = 53kT ,
the importance of dissociation in aggregation is found.
Specifically, the irreversible well slightly accelerate ag-
gregation in the early stages while quenching to the ini-
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(a)Isolated Clusters (b)Network of Clusters (c)Homogeneous Network

FIG. 9: Examples of the three classes of intermediate structures observed in reactive colloid reorganization: isolated clusters,
a network of clusters, and a homogeneous network. The same coloring scheme as Figure 7 is used in showing these simulation
snapshots.

(a)Isolated Clusters (b)Network of Clusters (c)Homogeneous Network (d)Graph Closeup

FIG. 10: Examples of aggregation graphs that encode network structure. Shown for the three examples from Figure 9 and a
closeup of one of the graphs is included to show the particles as nodes with edges as pairwise aggregation.

tially formed structures and this prevents reorganization
to higher extents of aggregation. Visual analysis shows
that the resulting structures are highly homogeneous and
lack any highly aggregated domains. Therefore further
investigation of reversible vs. irreversible aggregation will
be closely tied to our work analyzing reorganization and
intermediate aggregation structures.

VI. EFFECT OF SHEAR FORCES ON
REACTIVE COLLOIDS

Lastly, it is known that shearing forces can drastically
alter the aggregation dynamics of reactive colloid sys-
tems by providing a driving force to overcome energetic
barriers.56 We are very interested in investigating this
driven phenomena at the same high level of detail as we
have applied to stationary systems. A challenge in such
an investigation, is the proper handling of the multibody
hydrodynamic forces in a computationally tractable fash-
ion, without over simplification of important terms.57
Multiple methods have been developed for simulating

hydrodynamics in sheared colloidal systems and we are
still determining which methods will be optimal for reac-
tive colloids, although methods will require substantially
more computing power.57–60

In anticipation of this future large-scale computational
need, we have recently completed a proposal for 3 mil-
lion hours of Teragrid cluster computing time. In sup-
port of this proposal, we have performed a preliminary
investigation of shear forces in colloid aggregation, with-
out the modeling of shear forces. While these results are
highly suspect with this omission, they are included here
to show the possibility of interesting effects from shear
forces (Figure 12). It is found that shear accelerates ag-
gregation at the early stages by providing energy to over-
come the reaction barriers, while at later times aggrega-
tion is limited by shear forces breaking up long range
structures and thereby inhibiting higher levels of aggre-
gation. Details of such results will change with proper
modeling of hydrodynamics interactions, although these
initial results are indicative of interesting shear induced
behavior.
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FIG. 11: Current results investigating effects of different well
depths Uw on the aggregation dynamics of reactive colloids.
Results shown for a low reaction barrier of Ub = 1.03kT (f =
0.1) at different volume fractions as denoted by color: φ = 0.5
- magenta, φ = 0.35 - green, φ = 0.2 - blue, and φ = 0.05 - red.
Three different well depths are investigated for each volume
fraction and the aggregation dynamics for each are shown as
different markers: Uw = 0.53kT ©, Uw = 5.3kT (original
value) 4, and Uw = 53kT 2.

VII. THE PATH FORWARD

As discussed in the last few sections, we are currently
investigating several phenomena in reactive colloid aggre-
gation: the reorganization of colloidal structures as im-
portant in the later stages of aggregation; different well
depths leading to reversible or irreversible aggregation;
and the effects of shear. As of current, these projects
will be the future focus of my research. On completion,
each will extend our knowledge of reactive colloid ag-
gregation beyond the basic characterization provided in
our first study. Additionally, we are also investigating
other aggregating colloidal systems, such as the bicol-
ored Janus particles that are gaining interest in nanoscale
assembly,61 and if time and resources permits we hope to
further investigate the nonequilibrium behavior of addi-
tional aggregating colloidal systems.
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FIG. 12: Preliminary results for shear dependent aggregation
dynamics, as measured by average particle coordination num-
ber as a function of time. Results shown for three different
shear rates γ̇ = 0s−1 ©, γ̇ = 100s−1 4, and γ̇ = 10000s−1
3 for volume fractions of φ = 0.5 - magenta, φ = 0.35 - green,
φ = 0.2 - blue, and φ = 0.05 - red.
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